11,430 research outputs found

    Radar cross calibration investigation TAMU radar polarimeter calibration measurements

    Get PDF
    A short pulse, 20 MHz bandwidth, three frequency radar polarimeter system (RPS) operates at center frequencies of 10.003 GHz, 4.75 GHz, and 1.6 GHz and utilizes dual polarized transmit and receive antennas for each frequency. The basic lay-out of the RPS is different from other truck mounted systems in that it uses a pulse compression IF section common to all three RF heads. Separate transmit and receive antennas are used to improve the cross-polarization isolation at each particular frequency. The receive is a digitally controlled gain modulated subsystem and is interfaced directly with a microprocesser computer for control and data manipulation. Antenna focusing distance, focusing each antenna pair, rf head stability, and polarization characteristics of RPS antennas are discussed. Platform and data acquisition procedures are described

    Space capsule Patent

    Get PDF
    Manned space capsule configuration for orbital flight and atmospheric reentr

    Small-Molecule Photostabilizing Agents are Modifiers of Lipid Bilayer Properties

    Get PDF
    AbstractSmall-molecule photostabilizing or protective agents (PAs) provide essential support for the stability demands on fluorescent dyes in single-molecule spectroscopy and fluorescence microscopy. These agents are employed also in studies of cell membranes and model systems mimicking lipid bilayer environments, but there is little information about their possible effects on membrane structure and physical properties. Given the impact of amphipathic small molecules on bilayer properties such as elasticity and intrinsic curvature, we investigated the effects of six commonly used PAs—cyclooctatetraene (COT), para-nitrobenzyl alcohol (NBA), Trolox (TX), 1,4-diazabicyclo[2.2.2]octane (DABCO), para-nitrobenzoic acid (pNBA), and n-propyl gallate (nPG)—on bilayer properties using a gramicidin A (gA)-based fluorescence quench assay to probe for PA-induced changes in the gramicidin monomer↔dimer equilibrium. The experiments were done using fluorophore-loaded large unilamellar vesicles that had been doped with gA, and changes in the gA monomer↔dimer equilibrium were assayed using a gA channel-permeable fluorescence quencher (Tl+). Changes in bilayer properties caused by, e.g., PA adsorption at the bilayer/solution interface that alter the equilibrium constant for gA channel formation, and thus the number of conducting gA channels in the large unilamellar vesicle membrane, will be detectable as changes in the rate of Tl+ influx—the fluorescence quench rate. Over the experimentally relevant millimolar concentration range, TX, NBA, and pNBA, caused comparable increases in gA channel activity. COT, also in the millimolar range, caused a slight decrease in gA channel activity. nPG increased channel activity at submillimolar concentrations. DABCO did not alter gA activity. Five of the six tested PAs thus alter lipid bilayer properties at experimentally relevant concentrations, which becomes important for the design and analysis of fluorescence studies in cells and model membrane systems. We therefore tested combinations of COT, NBA, and TX; the combinations altered the fluorescence quench rate less than would be predicted assuming their effects on bilayer properties were additive. The combination of equimolar concentrations of COT and NBA caused minimal changes in the fluorescence quench rate

    Completeness in Photometric and Spectroscopic Searches for Clusters

    Get PDF
    We investigate, using simulated galaxy catalogues, the completeness of searches for massive clusters of galaxies in redshift surveys or imaging surveys with photometric redshift estimates, i.e. what fraction of clusters (M>10^14/h Msun) are found in such surveys. We demonstrate that the matched filter method provides an efficient and reliable means of identifying massive clusters even when the redshift estimates are crude. In true redshift surveys the method works extremely well. We demonstrate that it is possible to construct catalogues with high completeness, low contamination and both varying little with redshift.Comment: ApJ in press, 15 pages, 10 figure

    Critical Droplets and Phase Transitions in Two Dimensions

    Full text link
    In two space dimensions, the percolation point of the pure-site clusters of the Ising model coincides with the critical point T_c of the thermal transition and the percolation exponents belong to a special universality class. By introducing a bond probability p_B<1, the corresponding site-bond clusters keep on percolating at T_c and the exponents do not change, until p_B=p_CK=1-exp(-2J/kT): for this special expression of the bond weight the critical percolation exponents switch to the 2D Ising universality class. We show here that the result is valid for a wide class of bidimensional models with a continuous magnetization transition: there is a critical bond probability p_c such that, for any p_B>=p_c, the onset of percolation of the site-bond clusters coincides with the critical point of the thermal transition. The percolation exponents are the same for p_c<p_B<=1 but, for p_B=p_c, they suddenly change to the thermal exponents, so that the corresponding clusters are critical droplets of the phase transition. Our result is based on Monte Carlo simulations of various systems near criticality.Comment: Final version for publication, minor changes, figures adde

    Two qubits entanglement dynamics in a symmetry-broken environment

    Full text link
    We study the temporal evolution of entanglement pertaining to two qubits interacting with a thermal bath. In particular we consider the simplest nontrivial spin bath models where symmetry breaking occurs and treat them by mean field approximation. We analytically find decoherence free entangled states as well as entangled states with an exponential decay of the quantum correlation at finite temperature.Comment: 10 pages, 2 figure
    • …
    corecore